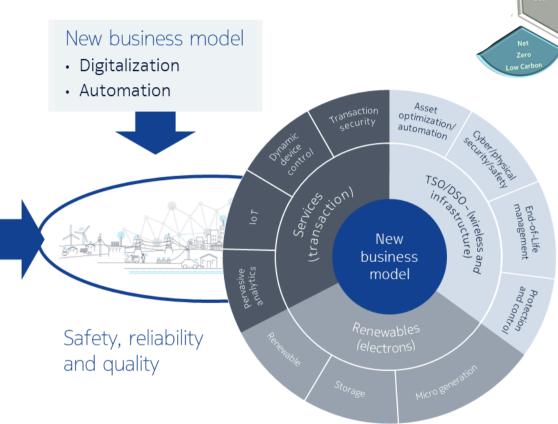
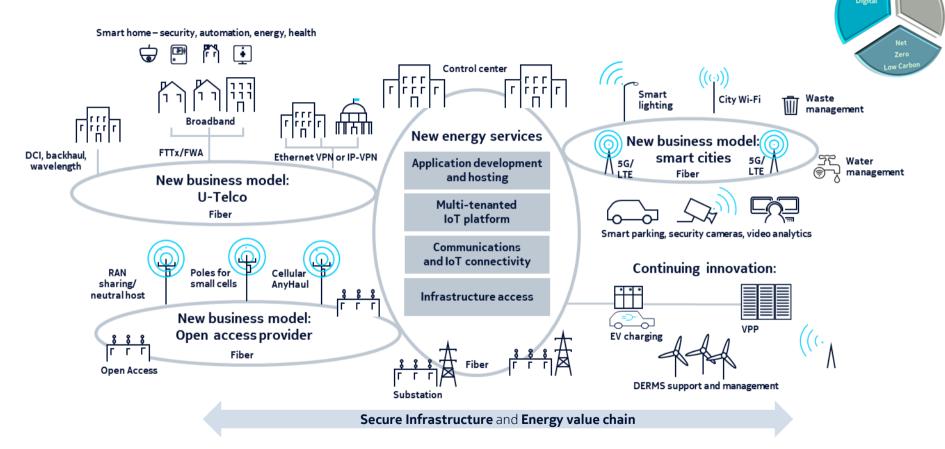


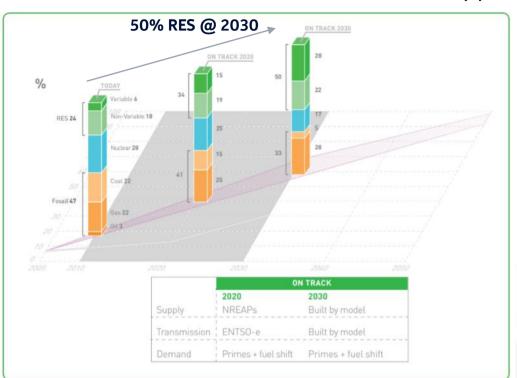
Market Developments supporting the Digitisation of Energy Networks

and delivering the 'Net Zero' Agenda



Up to 65% of power generation could be localised by 2050 (National Grid, 2018). Distributed generation from wind turbines, solar panels, and other renewable sources will become the norm, rather than the exception. https://www.theblackoutreport.co.uk/wpcontent/uploads/2020/01/blackout report.pdf Internationally standardised technology Harmonised spectrum bands.


New business models



Net Zero means - New services revenues

Political and Government Statute and Industry prediction

The analysis shows LCOE numbers of €89/MWh in 2020 and €85/MWh in 2030 for new builds, including CO2 prices, which is only a small increase compared to the estimated value of €82/MWh for new generation added in the previous decade . These estimates are comparable to the numbers in last year's Roadmap 2050 report which showed a backcasted LCOE of €84/MWh in 2020 and €86/MWh in 2030.

The analysis thus shows it is feasible to keep LCOE under control through the decades of transition to a fully decarbonised power sector. The increase in upfront investments will have to be incentivised appropriately but will pay—off through decreasing operating costs.

A > Projects > Projects to be financed >

LOW CARBON EUROPEAN RENEWABLES FUND

About us Consumers Gas Electricity Environmental Programmes Investigations Consultations News & Blog Data Portal

Return to Ofgem, data and cyber

Digitalisation Strategies for Modernising Energy Data

Information types Open letters and correspondence Policy areas Business consumers

2020

2021

RIIO-T2

Our members are:

UK - Total emissions of greenhouse gases, 1990-2018

Source: Institute for Government analysis of: Final UK greenhouse gas emissions notional statistics, BEIS, February 2020

ANM, TANM, Flexibility Schemes, Demand Response. Open Net, LV Monitors etc NOKIA

2018

Framework

consultation

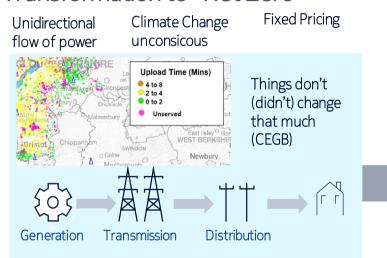
2019

challenge groups

nian summission

specific methodology

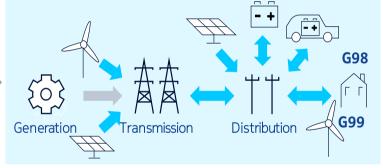
decision Initial business esponse due plans shared with


Programme

launch:

Results presentations

Smart Grid Communications


Transformation to "Net Zero"

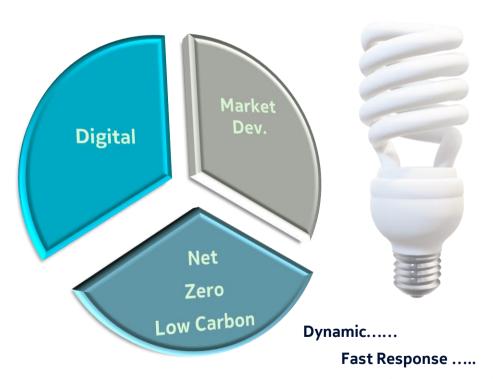
Distributed, Climate change multiple power sources demands increased efficiency

Dynamic Pricing

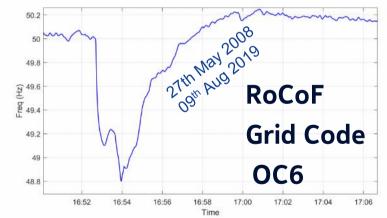
More competitive and stringent regulatory environment

Business/T

Digital

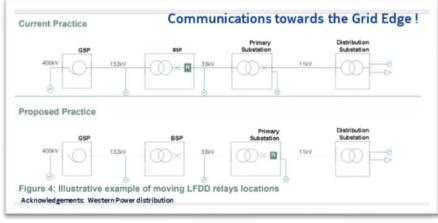

Operational Telecom - > ENABLING THE SHIFT

Control of the decentralized network of renewable, intermittent power sources through a reliable wireless network with guaranteed latency guaranteed standards guaranteed performance (not really shared)!


Improve the reliability, safety, availability, efficiency of power grid through communications. Current approach is fiber between nodes with DWDM and IP/MPLS; distance between relays determined by delay constraint, edge is largely Private LTE

Keeping those Lights on! Renewables and Balancing Acts!

Need Responsive Operational Telecom!


Virtual Power Plant

Landscape is changing for GSP and Telecoms Administration

Operational SCADA / Telecoms	Immediacy
Fault Detection	10 mS Responses
Phasor Management Measures / LFDD	< 2-3 mS / >500 mS
Frequency Fast Response Hong_etal_ACDC2018_Fast_frequency_response	100-1000mS se_for_effective_frequency_control.pdf
Traditional SCADA Poll	60.000 to 180.000 mS

- Edge
- Performance
- Interoperability
- Longevity

With changing Landscape to "Zero Carbon" is Tradition really enough?

- <u>DMR /LMR Radio</u> Push-to-Talk communications during catastrophe to a mobile and increasingly connected workforce
- •<u>Wireless/ Mesh Systems (LPWA) WiMax/ AMI</u> Metering features such as billing information and limited latent services or Endpoint manufacturer
- •<u>UHF Narrow band 12.5Khz Networks</u> for telemetry and SCADA to monitor and remotely control plant and equipment long duty cycle but ideal bands
- •<u>Fixed Wireless / P2MP microwave</u> useful adaption but challenged due to spectrum shifts (1.4Ghz) -> X
- = Silo's Radio systems that often require own real estate, imagine each of us using voice video and data terminals separately we would certainly need big pockets today!

What does a Utility Telecoms network look like in Future?

36 P

The huge leap forward in speed and performance requires some new technology building blocks These Market features are present today

New spectrum options <3 GHz, 3-6 GHz, cm/mmWave

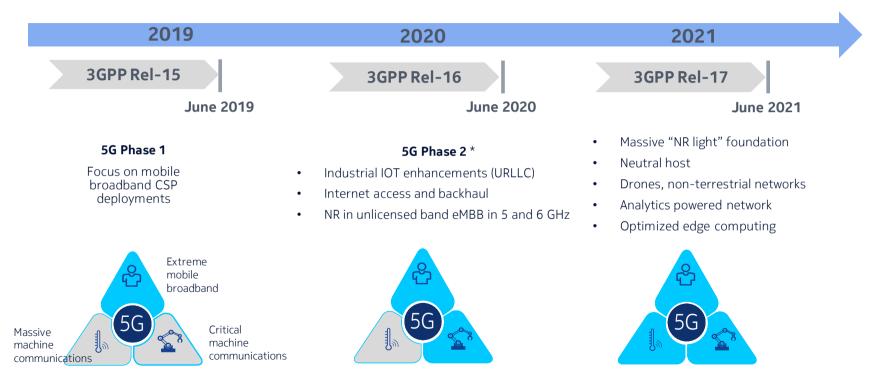
Massive MIMO & beamforming

Flexible air interface

Cloud native & Network slicing

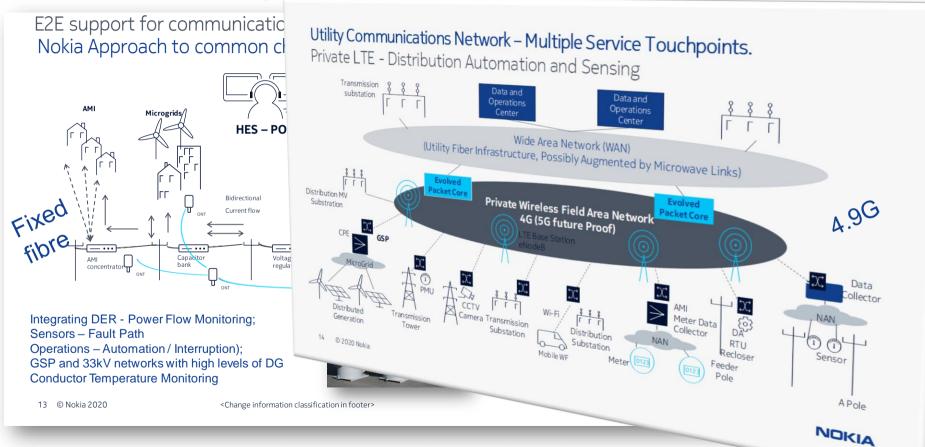
Centralized and distributed

Connectionless
Communication
Efficient massive lot


Forward Looking 5G & URLLC Use Cases Nokia /Customer Validations in Progress

Pro	oven Use-Cases	Service Type	Bandwidth	Latency	QoS	High Availability	Security	NB-IoT Support
	Distribution Automation	MPLS, IPSec	Low	100-300 ms	Must	Must, geo- redundancy,	Must, onsite assets and control	Partial
	AMI Backhaul	MPLS, IPSec	Medium	100-300 ms	Desired			Supported
E	Fallen Conductor Protection	MPLS	High	50 ms	Must			Not Supported
butic	Mobile WorkForce	Mobile Terminals	Medium	100 ms	Must			Not Supported
Distribution	PTT/PTV/LMR Replacement	MPLS	Medium-Low	175 ms	Must	fast-failover		Not Supported
	Physical Security	MPLS, IPSec	High	100-300 ms	Must			Not Supported
	ссти		High	175 ms	Must			Not Supported
	IT/Office		High	100-300 ms	Not required			Not Supported
E	AMI	URLLC	Very low	300 ms	Not required	Yes	Must, onsite assets and control	Supported
nissid	Smart City	IP	Very low	300 ms	Desired	Yes		Supported
ransmission	Smart Poles	IP	Very low	300 ms	Not required	Yes		Supported
F	CCTV HD*	IP	Very High	175 ms	Must	Yes		Not Supported

3GPP releases timeline - Longivity!


Standard timeline, typically available in products 18 months after standard finalisation

Fixed and Mobile Convergence - Market Development is There Today

Customer Examples

*The Nokla Private LTE pilot has successfully provided outstanding relia We have expanded to a network of 19 distribution automation line device enodeB. The flexibility of this system will provide America with a fact pa we move into grid modernization. Troy Tipsword - AiC Sup. DA & Ops

High Level Use Case	- In a ops				
	Use Case				
900 MHz Use Cases	Switching between private and pu				
	S&C Tearning/Intellirupters				
	Engineering Access				
	VOIP				
	Corp LAN				
	SCADA-Ethernet				
	SCA DA- Serial				
	AMVS mart Meter Collector				
	Series and Red Bits				
NB-IOT Use Cases	NCE				
	EN core Install				
	Cap Bank Controller – strong RSS Cap Bank Controller – mid RSSI Cap Bank Controller – fringe RSS				
					Underground Install
					Underground Install

PoC Test Scope

Utility Use cases in B31 450 MHz 2x

- Establish evidence that pLTE 450 MHz can replace TETRA for field force enablement
- Test coverage for Push-to-Talk (PTT) and Push-to-Video (PTV) in the field
- Test performance of SCADA & Distribution automation applications over pLTE
- Test Smart With COMMUNIC ATION with COVERAGE

21 @ 2019 Nokia

Brazil, World largest wind generator

 Grid monitoring to prevent illegal tapping and increase grid reliability

· Grid automation for maintaining quality

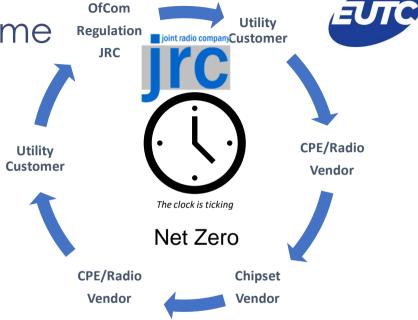
Region CONCENTRATION CONCENTRA

- 78,000 smart meters
- · 1,300 load balancers
- 850 concentrators

North Atlantic
Offshore Windfarm

Four Mini-macros 2x20W B38 deployed on the OHVS platform

NOKIA



North America, South America - Brazil, European Deployments - ON and Offshore

Net Zero "Field of Dreams" Syndrome

- Utilities need More Comms /Spectrum
- Vendors rely on chipset
- Chipset needs TAM commitment
- Utilities need established ecosystem for long term assets

